On the inf-sup stability of Crouzeix-Raviart Stokes elements in 3D

نویسندگان

چکیده

We consider discretizations of the stationary Stokes equation in three spatial dimensions by non-conforming Crouzeix-Raviart elements. The original definition seminal paper M. Crouzeix and P.-A. Raviart 1973 [Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), pp. 33–75] is implicit also contains substantial freedom for a concrete choice. In this paper, we introduce basic spaces 3D analogy to 2D case fully explicit way. prove that basic element inf-sup stable polynomial degree k = 2 k=2 (quadratic velocity approximation). identify spurious pressure modes conforming alttext="left-parenthesis k comma minus 1 right-parenthesis"> ( , − 1 ) encoding="application/x-tex">\left ( k,k-1\right ) show these are eliminated using space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crouzeix-Raviart boundary elements

This paper establishes a foundation of non-conforming boundary elements. We present a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix–Raviart elements for the approximation. The cases of closed and open polyhedral surfaces are dealt with. We prove that, for shape regular elements, this non-conforming boundary element method converges and that, up to log...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements

The paper shows an inf-sup stability property for several well-known 2D and 3D Stokes elements on triangulations which are not fitted to a given smooth or polygonal domain. The property implies stability and optimal error estimates for a class of unfitted finite element methods for the Stokes and Stokes interface problems, such as Nitsche-XFEM or cutFEM. The error analysis is presented for the ...

متن کامل

On Evaluating the Inf–sup Condition for Plate Bending Elements

This paper addresses the evaluation of the inf–sup condition for Reissner–Mindlin plate bending elements. This fundamental condition for stability and optimality of a mixed nite element scheme is, in general, very di cult to evaluate analytically, considering for example distorted meshes. Therefore, we develop a numerical test methodology. To demonstrate the test methodology and to obtain speci...

متن کامل

Inf-Sup stability of the discrete duality finite volume method for the 2D Stokes problem

“Discrete Duality Finite Volume” schemes (DDFV for short) on general 2D meshes, in particular non conforming ones, are studied for the Stokes problem with Dirichlet boundary conditions. The DDFV method belongs to the class of staggered schemes since the components of the velocity and the pressure are approximated on different meshes. In this paper, we investigate from a numerical and theoretica...

متن کامل

Intergenerational equity: sup, inf, lim sup, and lim inf

We study the problem of intergenerational equity for utility streams and a countable set of agents. A numerical social welfare function is invariant to ordinal transformation, satis…es a weak monotonicity condition, and an invariance with respect to concatenation of utility streams if and only if it is either the sup, inf, lim sup, or lim inf.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2022

ISSN: ['1088-6842', '0025-5718']

DOI: https://doi.org/10.1090/mcom/3793